If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+3n-1022=0
a = 5; b = 3; c = -1022;
Δ = b2-4ac
Δ = 32-4·5·(-1022)
Δ = 20449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{20449}=143$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-143}{2*5}=\frac{-146}{10} =-14+3/5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+143}{2*5}=\frac{140}{10} =14 $
| 5(2x-3)=52 | | 5(2x-2)=52 | | -56+k=16 | | 24/x+2=4 | | (2n-1)(3n+2)=0 | | -42x²*x+30x²+35x=0 | | -7h-(-35)=14 | | 16(4-3m)=9-m/2+1 | | 6b-4=b-14 | | 8b-7b=15b= | | 1/2y+10=1/10y | | 9×+2y=65×+2y=13 | | g-10=g8-10 | | x=2/5=6/15 | | 4=6+5x | | 6x–40=16x | | 36=v+8v | | 3x+2+5x=x+443x+2+5x=x+44 | | 60x^2-20x=185 | | 36=13v-7v | | x*0.55=1 | | 3x-9=63-5x | | 3b-8+4b+4=7b-4 | | X/1+x/3=8 | | 3b-8+4b+4=1 | | (d+4)=(d-4) | | -8=-7+u | | 200/x-2x=0 | | -8u+6(u-6)=-26 | | 0.021/2.5=x | | u-1.7=5.27 | | v+2.3=4.58 |